skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kasper, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the Rossiter–McLaughlin measurement of the sub-Neptune TOI-1759A b with MAROON-X. A joint analysis with MuSCAT3 photometry and nine additional TESS transits produces a sky-projected obliquity of ∣λ∣ = 4° ± 18°. We also derive a true obliquity ofψ= 24° ± 12° making this planet consistent with full alignment albeit to <1σ. With a period of 18.85 days and ana/R*of 40, TOI-1759A b is the longest period single sub-Neptune to have a measured obliquity. It joins a growing number of smaller planets which have had this measurement made and, along with K2-25 b, is the only single, aligned sub-Neptune known to date. We also provide an overview of the emerging distribution of obliquity measurements for planets withR< 8R. We find that these types of planets tend toward alignment, especially the sub-Neptunes and super-Earths, implying a dynamically cool formation history. The majority of misaligned planets in this category have 4 <R≤ 8Rand are more likely to be isolated than planets rather than in compact systems. We find this result to be significant at the 3σlevel, consistent with previous studies. In addition, we conduct injection and recovery testing on available archival radial velocity data to put limits on the presence of massive companions in these systems. Current archival data is insufficient for most systems to have detected a giant planet. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  2. Abstract MAROON-X is a state-of-the-art extreme-precision radial velocity spectrograph deployed on the 8.1 m Gemini-N telescope on Maunakea, Hawai’i. Using a stabilized Fabry–Pérot etalon for wavelength and drift calibration, MAROON-X has achieved a short-term precision of ∼30 cm s−1. However, due to a long-term drift in the etalon (2.2 cm s−1per day) and various interruptions of the instrument baseline over the first few years of operation, MAROON-X experiences radial velocity (RV) offsets between observing runs several times larger than the short-term precision during any individual run, which hinders the detection of longer-period signals. In this study, we analyze RV measurements of 11 targets that either exhibit small RV scatter or have signals that can be precisely constrained using Keplerian or Gaussian process models. Leveraging this ensemble, we calibrate MAROON-X’s run offsets for data collected between 2020 September and early 2024 January to a precision of ∼0.5 m s−1. When applying these calibrated offsets to HD 3651, a quiet star, we obtain residual velocities with an rms of <70 cm s−1in both the red and blue channels of MAROON-X over a baseline of 29 months. We also demonstrate the sensitivity of MAROON-X data calibrated with these offsets through a series of injection-recovery tests. Based on our findings, MAROON-X is capable of detecting sub m s−1signals out to periods of more than 1000 days. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  3. Abstract Barnard’s Star is an old, single M dwarf star that comprises the second-closest extrasolar system. It has a long history of claimed planet detections from both radial velocities and astrometry. However, none of these claimed detections have so far withstood further scrutiny. Continuing this story, extreme precision radial velocity measurements from the ESPRESSO instrument have recently been used to identify four new sub-Earth-mass planet candidates around Barnard’s Star. We present here 112 radial velocities of Barnard’s Star from the MAROON-X instrument that were obtained independently to search for planets around this compelling object. The data have a typical precision of 30 cm s−1and are contemporaneous with the published ESPRESSO measurements (2021–2023). The MAROON-X data on their own confirm planet b (P= 3.154 days) and planet candidates c and d (P= 4.124 and 2.340 days, respectively). Furthermore, adding the MAROON-X data to the ESPRESSO data strengthens the evidence for planet candidate e (P= 6.739 days), thus leading to its confirmation. The signals from all four planets are <50 cm s−1, the minimum masses of the planets range from 0.19 to 0.34M, and the system is among the most compact known among late M dwarfs hosting low-mass planets. The current data rule out planets with masses >0.57M(with a 99% detection probability) in Barnard's Star’s habitable zone (P= 10–42 days). 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  4. Abstract We present an updated characterization of the TOI-1685 planetary system, which consists of aPb= 0.69 day ultra-short-period super-Earth planet orbiting a nearby (d= 37.6 pc) M2.5V star (TIC 28900646, 2MASS J04342248+4302148). This planet was previously featured in two contemporaneous discovery papers, but the best-fit planet mass, radius, and bulk density values were discrepant, allowing it to be interpreted either as a hot, bare rock or a 50% H2O/50% MgSiO3water world. TOI-1685 b will be observed in three independent JWST Cycle 2 programs, two of which assume the planet is a water world, while the third assumes that it is a hot rocky planet. Here we include a refined stellar classification with a focus on addressing the host star’s metallicity, an updated planet radius measurement that includes two sectors of TESS data and multicolor photometry from a variety of ground-based facilities, and a more accurate dynamical mass measurement from a combined CARMENES, InfraRed Doppler, and MAROON-X radial velocity data set. We find that the star is very metal-rich ([Fe/H] ≃ +0.3) and that the planet is systematically smaller, lower mass, and higher density than initially reported, with new best-fit parameters ofRpl= 1.468 0.051 + 0.050 RandMpl= 3.03 0.32 + 0.33 M. These results fall in between the previously derived values and suggest that TOI-1685 b is a hot rocky planet with an Earth-like density (ρpl= 5.3 ± 0.8 g cm−3, or 0.96ρ), high equilibrium temperature (Teq= 1062 ± 27 K), and negligible volatiles, rather than a water world. 
    more » « less
  5. Abstract Close-in lava planets represent an extreme example of terrestrial worlds, but their high temperatures may allow us to probe a diversity of crustal compositions. The brightest and most well-studied of these objects is 55 Cancri e, a nearby super-Earth with a remarkably short 17 hr orbit. However, despite numerous studies, debate remains about the existence and composition of its atmosphere. We present upper limits on the atmospheric pressure of 55 Cnc e derived from high-resolution time-series spectra taken with Gemini-N/MAROON-X. Our results are consistent with current crustal evaporation models for this planet which predict a thin ∼100 mbar atmosphere. We conclude that, if a mineral atmosphere is present on 55 Cnc e, the atmospheric pressure is below 100 mbar. 
    more » « less
  6. Abstract M-dwarf stars provide us with an ideal opportunity to study nearby small planets. The HUnting for M Dwarf Rocky planets Using MAROON-X (HUMDRUM) survey uses the MAROON-X spectrograph, which is ideally suited to studying these stars, to measure precise masses of a volume-limited (<30 pc) sample of transiting M-dwarf planets. TOI-1450 is a nearby (22.5 pc) binary system containing a M3 dwarf with a roughly 3000 K companion. Its primary star, TOI-1450A, was identified by the Transiting Exoplanet Survey Satellite (TESS) to have a 2.04 days transit signal, and is included in the HUMDRUM sample. In this paper, we present MAROON-X radial velocities (RVs) which confirm the planetary nature of this signal and measure its mass at nearly 10% precision. The 2.04 days planet, TOI-1450A b, hasRb= 1.13 ± 0.04RandMb= 1.26 ± 0.13M. It is the second-lowest-mass transiting planet with a high-precision RV mass measurement. With this mass and radius, the planet’s mean density is compatible with an Earth-like composition. Given its short orbital period and slightly sub-Earth density, it may be amenable to JWST follow-up to test whether the planet has retained an atmosphere despite extreme heating from the nearby star. We also discover a nontransiting planet in the system with a period of 5.07 days and a M sin i c = 1.53 ± 0.18 M . We also find a 2.01 days signal present in the systems’s TESS photometry that likely corresponds to the rotation period of TOI-1450A’s binary companion, TOI-1450B. TOI-1450A, meanwhile, appears to have a rotation period of approximately 40 days, which is in line with our expectations for a mid-M dwarf. 
    more » « less
  7. Abstract A star’s obliquity with respect to its planetary system can provide us with insight into the system’s formation and evolution, as well as hinting at the presence of additional objects in the system. However, M dwarfs, which are the most promising targets for atmospheric follow-up, are underrepresented in terms of obliquity characterization surveys due to the challenges associated with making precise measurements. In this paper, we use the extreme-precision radial velocity (RV) spectrograph MAROON-X to measure the obliquity of the late M dwarf TRAPPIST-1. With the Rossiter–McLaughlin effect, we measure a system obliquity of 2 ° 19 + 17 and a stellar rotational velocity of 2.1 ± 0.3 km s−1. We were unable to detect stellar surface differential rotation, and we found that a model in which all planets share the same obliquity was favored by our data. We were also unable to make a detection of the signatures of the planets using Doppler tomography, which is likely a result of the both the slow rotation of the star and the low signal-to-noise ratio of the data. Overall, TRAPPIST-1 appears to have a low obliquity, which could imply that the system has a low primordial obliquity. It also appears to be a slow rotator, which is consistent with past characterizations of the system and estimates of the star’s rotation period. The MAROON-X data allow for a precise measurement of the stellar obliquity through the Rossiter–McLaughlin effect, highlighting the capabilities of MAROON-X and its ability to make high-precision RV measurements around late, dim stars. 
    more » « less
  8. Abstract Wolf 359 (CN Leo, GJ 406, Gaia DR3 3864972938605115520) is a low-mass star in the fifth-closest neighboring system (2.41 pc). Because of its relative youth and proximity, Wolf 359 offers a unique opportunity to study substellar companions around M stars using infrared high-contrast imaging and radial velocity monitoring. We present the results ofMs-band (4.67μm) vector vortex coronagraphic imaging using Keck-NIRC2 and add 12 Keck-HIRES and 68 MAROON-X velocities to the radial velocity baseline. Our analysis incorporates these data alongside literature radial velocities from CARMENES, the High Accuracy Radial velocity Planet Searcher, and Keck-HIRES to rule out the existence of a close (a< 10 au) stellar or brown dwarf companion and the majority of large gas giant companions. Our survey does not refute or confirm the long-period radial velocity candidate, Wolf 359 b (P∼ 2900 days), but rules out the candidate's existence as a large gas giant (>4MJup) assuming an age of younger than 1 Gyr. We discuss the performance of our high-contrast imaging survey to aid future observers using Keck-NIRC2 in conjunction with the vortex coronagraph in theMsband and conclude by exploring the direct imaging capabilities with JWST to observe Jupiter- and Neptune-mass planets around Wolf 359. 
    more » « less
  9. Abstract The early K-type T-Tauri star, V1298 Tau (V= 10 mag, age ≈ 20–30 Myr) hosts four transiting planets with radii ranging from 4.9 to 9.6R. The three inner planets have orbital periods of ≈8–24 days while the outer planet’s period is poorly constrained by single transits observed with K2 and the Transiting Exoplanet Survey Satellite (TESS). Planets b, c, and d are proto–sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modeling analysis, which includes recently obtained TESS photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (≈2σ) RV detection of planet c, implying a mass of 19.8 8.9 + 9.3 M and a conservative 2σupper limit of <39M. For planets b and d, we derive 2σupper limits ofMb< 159MandMd< 41M, respectively. For planet e, plausible discrete periods ofPe> 55.4 days are ruled out at the 3σlevel while seven solutions with 43.3 <Pe/d< 55.4 are consistent with the most probable 46.768131 ± 000076 days solution within 3σ. Adopting the most probable solution yields a 2.6σRV detection with a mass of 0.66 ± 0.26MJup. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (∼5% by mass) H2envelope. 
    more » « less